We introduce a fast stepwise regression method, called the orthogonal greedy algorithm (OGA), that selects input variables to enter a p-dimensional linear regression model (with p ≫ n, the sample size ...
Businesspeople need to demand more from machine learning so they can connect data scientists’ work to relevant action. This requires basic machine learning literacy — what kinds of problems can ...
Selecting a subset of variables for linear models remains an active area of research. This article reviews many of the recent contributions to the Bayesian model selection and shrinkage prior ...
In this module, we will introduce generalized linear models (GLMs) through the study of binomial data. In particular, we will motivate the need for GLMs; introduce the binomial regression model, ...
Linear models, generalized linear models, and nonlinear models are examples of parametric regression models because we know the function that describes the relationship between the response and ...
During the course of operation, businesses accumulate all kinds of data such as numbers related to sales performance and profit, and information about clients. Companies often seek out employees with ...
This course is available on the BSc in Actuarial Science, BSc in Actuarial Science (with a Placement Year), BSc in Data Science, BSc in Financial Mathematics and Statistics, BSc in Mathematics with ...
Suzanne is a content marketer, writer, and fact-checker. She holds a Bachelor of Science in Finance degree from Bridgewater State University and helps develop content strategies. If you've ever ...
Some results have been hidden because they may be inaccessible to you
Show inaccessible results